An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
Abstract
This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations. © © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Más información
| Título según WOS: | An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification |
| Título según SCOPUS: | An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification |
| Título de la Revista: | IFAC-PapersOnLine |
| Volumen: | 56 |
| Número: | 2 |
| Editorial: | Elsevier B.V. |
| Fecha de publicación: | 2023 |
| Página de inicio: | 4204 |
| Página final: | 4209 |
| Idioma: | English |
| DOI: |
10.1016/j.ifacol.2023.10.1771 |
| Notas: | ISI, SCOPUS |