An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification

Aguero, Juan C.

Abstract

This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations. © © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Más información

Título según WOS: An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
Título según SCOPUS: An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
Título de la Revista: IFAC-PapersOnLine
Volumen: 56
Número: 2
Editorial: Elsevier B.V.
Fecha de publicación: 2023
Página de inicio: 4204
Página final: 4209
Idioma: English
DOI:

10.1016/j.ifacol.2023.10.1771

Notas: ISI, SCOPUS