An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification

Agüero, Juan C.

Abstract

This paper concerns the identification of continuous-time systems in state-space form that are subject to Lebesgue sampling. Contrary to equidistant (Riemann) sampling, Lebesgue sampling consists of taking measurements of a continuous-time signal whenever it crosses fixed and regularly partitioned thresholds. The knowledge of the intersample behavior of the output data is exploited in this work to derive an expectation-maximization (EM) algorithm for parameter estimation of the state-space and noise covariance matrices. For this purpose, we use the incremental discrete-time equivalent of the system, which leads to EM iterations of the continuous-time state-space matrices that can be computed by standard filtering and smoothing procedures. The effectiveness of the identification method is tested via Monte Carlo simulations.

Más información

Título según WOS: An EM Algorithm for Lebesgue-sampled State-space Continuous-time System Identification
Título de la Revista: IFAC PAPERSONLINE
Volumen: 56
Número: 2
Editorial: Elsevier
Fecha de publicación: 2023
Página de inicio: 4204
Página final: 4209
DOI:

10.1016/j.ifacol.2023.10.1771

Notas: ISI