Green photocatalytic mixed matrix membranes for simultaneous arsenic photo-oxidation and water recovery via membrane distillation

Santoro, Sergio; Occhiuzzi, Jessica; Aquino, Marco; Politano, Antonio; Straface, Salvatore; D'Andrea, Giuseppe; Carrillo, Cristobal; Mallada, Reyes; GARCIA-GONZALEZ, ANDREINA EVELIN; Estay, Humberto; Xevgenos, Dimitrios; Argurio, Pietro; Arriortua, Maria

Abstract

This work proposes an innovative integration of Membrane Distillation (MD) and photo-oxidation for a continuous recovery of water from arsenic (As) contaminated solutions coupled with the oxidation of arsenite (As (III)) into arsenate (As(V)). Polyvinylidene fluoride (PVDF) mixed matrix membranes (MMMs) containing titanium dioxide nanoparticles (TiO2 NPs) as photocatalyst were developed. A systematic study elucidated the effect of TiO2 NPs on membranes' morphology prepared via non-solvent-induced phase separation (NIPS) using triethyl phosphate (TEP) as a green solvent for PVDF solubilization. Vacuum membrane distillation (VMD) tests carried out by irradiating the MMMs with ultraviolet (UV) radiation demonstrated the possibility of recovering up to 80 % of the water from As-contaminated synthetic and real multi-ions aqueous solutions from Sila Massif (Italy). The distillate was recovered at a rate of 6.9-7.2 kg center dot m- 2 center dot h-1 (feed inlet temperature of 60 degrees C), while the presence of 7 wt% of TiO2 in PVDF membranes enabled the photo-oxidation of 95 % of the As(III) to As(V) at a first order kinetic constant of 0.0106 min-1. After 5 cycles of As-remediation experiments, post-hoc mechanical testing on the membrane suggested the emergence of polymer embrittlement induced by UV radiation (total irradiation time of 7.5 h), highlighting the urgent need for developing photocatalytic membranes with long-term stability. Overall, this study elucidates at laboratory scale the performance of a coupled and continuous Membrane Distillation (MD) and photo-oxidation system for arsenic (As) remediation, employing microporous hydrophobic green membranes doped with a photocatalyst.

Más información

Título según WOS: Green photocatalytic mixed matrix membranes for simultaneous arsenic photo-oxidation and water recovery via membrane distillation
Título según SCOPUS: ID SCOPUS_ID:85187217659 Not found in local SCOPUS DB
Título de la Revista: SEPARATION AND PURIFICATION TECHNOLOGY
Volumen: 342
Editorial: Elsevier
Fecha de publicación: 2024
DOI:

10.1016/J.SEPPUR.2024.127042

Notas: ISI, SCOPUS