Stability results for polyhedral complementarity problems
Abstract
In this work, we study the multivalued complementarity problem for polyhedral multifunctions under homogeneity assumptions. We employ an approach that consists in approximating the equivalent variational inequality formulation of the problem and studying the asymptotic behavior of sequences of solutions to these approximation problems. To do this, we employ results and the language of Variational Analysis. The novelty of this approach lies in the fact that it allows us to obtain not only existence results but also stability ones. We consider that our results can be used for developing numerical algorithms for solving multivalued complementarity problems. © 2009 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Stability results for polyhedral complementarity problems |
Título según SCOPUS: | Stability results for polyhedral complementarity problems |
Título de la Revista: | COMPUTERS & MATHEMATICS WITH APPLICATIONS |
Volumen: | 58 |
Número: | 7 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2009 |
Página de inicio: | 1475 |
Página final: | 1486 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S089812210900474X |
DOI: |
10.1016/j.camwa.2009.07.036 |
Notas: | ISI, SCOPUS |