PARAMETRICALLY DRIVEN INSTABILITY IN QUASI-REVERSAL SYSTEMS

Clerc, MG; Coulibaly, S; Laroze, D

Abstract

Parametric instability of quasi-reversal system i.e. time reversible systems perturbed with injection and dissipation of energy is studied in a unified manner. We infer and characterize an adequate amplitude equation, which is the parametrically driven damped nonlinear Schrödinger equation, corrected with higher order terms. This model exhibits rich dynamical behavior which are lost in the parametrically driven damped nonlinear Schrödinger equation such as: uniform states, fronts and coherent states. The dynamical behavior of a simple parametrically driven system, the vertically driven chain of pendula, exhibits quite good agreement with the amended amplitude equation. © 2009 World Scientific Publishing Company.

Más información

Título según WOS: PARAMETRICALLY DRIVEN INSTABILITY IN QUASI-REVERSAL SYSTEMS
Título según SCOPUS: Parametrically driven instability in quasi-reversal systems
Título de la Revista: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
Volumen: 19
Número: 10
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2009
Página de inicio: 3525
Página final: 3532
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0218127409024967
DOI:

10.1142/S0218127409024967

Notas: ISI, SCOPUS