PARAMETRICALLY DRIVEN INSTABILITY IN QUASI-REVERSAL SYSTEMS
Abstract
Parametric instability of quasi-reversal system i.e. time reversible systems perturbed with injection and dissipation of energy is studied in a unified manner. We infer and characterize an adequate amplitude equation, which is the parametrically driven damped nonlinear Schrödinger equation, corrected with higher order terms. This model exhibits rich dynamical behavior which are lost in the parametrically driven damped nonlinear Schrödinger equation such as: uniform states, fronts and coherent states. The dynamical behavior of a simple parametrically driven system, the vertically driven chain of pendula, exhibits quite good agreement with the amended amplitude equation. © 2009 World Scientific Publishing Company.
Más información
Título según WOS: | PARAMETRICALLY DRIVEN INSTABILITY IN QUASI-REVERSAL SYSTEMS |
Título según SCOPUS: | Parametrically driven instability in quasi-reversal systems |
Título de la Revista: | INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS |
Volumen: | 19 |
Número: | 10 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2009 |
Página de inicio: | 3525 |
Página final: | 3532 |
Idioma: | English |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0218127409024967 |
DOI: |
10.1142/S0218127409024967 |
Notas: | ISI, SCOPUS |