A PIECEWISE LINEAR FINITE ELEMENT METHOD FOR THE BUCKLING AND THE VIBRATION PROBLEMS OF THIN PLATES
Abstract
The aim of this paper is to analyze a piecewise linear nite element method to approximate the buckling and the vibration problems of a thin plate. The method is based on a conforming discretization of a bending moment formulation for the Kirchhoff-Love model. The analysis restricts to simply connected polygonal clamped plates, not necessarily convex. The method is proved to converge with optimal order for both spectral problems, including an improved order for the eigenvalues. Numerical experiments are reported to assess its performance and to compare it with other low-order nite element methods. © 2009 American Mathematical Society.
Más información
Título según WOS: | A PIECEWISE LINEAR FINITE ELEMENT METHOD FOR THE BUCKLING AND THE VIBRATION PROBLEMS OF THIN PLATES |
Título según SCOPUS: | A piecewise linear finite element method for the buckling and the vibration problems of thin plates |
Título de la Revista: | MATHEMATICS OF COMPUTATION |
Volumen: | 78 |
Número: | 268 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2009 |
Página de inicio: | 1891 |
Página final: | 1917 |
Idioma: | English |
Notas: | ISI, SCOPUS |