An Unsupervised Machine Learning Approach for Process Monitoring by Visual Analytics
Abstract
This paper examines the suitability of unsupervised machine learning methods for image analysis, within the innovative visual analytics framework for process monitoring, and proposes a set of performance metrics that evaluate accuracy for visual analytics. The effectiveness of the proposed method is demonstrated via a case study using real industrial data from a steam boiler.
Más información
Título según SCOPUS: | ID SCOPUS_ID:85204308804 Not found in local SCOPUS DB |
Volumen: | 58 |
Fecha de publicación: | 2024 |
Página de inicio: | 847 |
Página final: | 854 |
DOI: |
10.1016/J.IFACOL.2024.08.443 |
Notas: | SCOPUS |