POSITIVE SOLUTIONS OF A NONLINEAR STURM-LIOUVILLE BOUNDARY-VALUE PROBLEM
Abstract
We establish the existence of positive solutions of the Sturm-Liouville problem ?(p(s, u)u′)′ = q̂(s)uph(s, u, u′) in(0, 1), u(0) = 0 = u(1),where p(s, u) = 1/(a(s) + cg(u)).We assume g and q}̂ to be non-negative, continuous functions, a(s) is a positive continuous function, c ≥ 0, p>1, and the function h is sub-quadratic with respect to u. We combine a priori estimates with a fixed-point result of Krasnosel'skii to obtain the existence of a positive solution. © 2009 Edinburgh Mathematical Society.
Más información
Título según WOS: | POSITIVE SOLUTIONS OF A NONLINEAR STURM-LIOUVILLE BOUNDARY-VALUE PROBLEM |
Título según SCOPUS: | Positive solutions of a nonlinear SturmLiouville boundary-value problem |
Título de la Revista: | PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY |
Volumen: | 52 |
Número: | 3 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2009 |
Página de inicio: | 561 |
Página final: | 568 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S0013091507000120 |
DOI: |
10.1017/S0013091507000120 |
Notas: | ISI, SCOPUS |