POSITIVE SOLUTIONS OF A NONLINEAR STURM-LIOUVILLE BOUNDARY-VALUE PROBLEM

Cerda, P; Ubilla P.

Abstract

We establish the existence of positive solutions of the Sturm-Liouville problem ?(p(s, u)u′)′ = q̂(s)uph(s, u, u′) in(0, 1), u(0) = 0 = u(1),where p(s, u) = 1/(a(s) + cg(u)).We assume g and q}̂ to be non-negative, continuous functions, a(s) is a positive continuous function, c ≥ 0, p>1, and the function h is sub-quadratic with respect to u. We combine a priori estimates with a fixed-point result of Krasnosel'skii to obtain the existence of a positive solution. © 2009 Edinburgh Mathematical Society.

Más información

Título según WOS: POSITIVE SOLUTIONS OF A NONLINEAR STURM-LIOUVILLE BOUNDARY-VALUE PROBLEM
Título según SCOPUS: Positive solutions of a nonlinear SturmLiouville boundary-value problem
Título de la Revista: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY
Volumen: 52
Número: 3
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2009
Página de inicio: 561
Página final: 568
Idioma: English
URL: http://www.journals.cambridge.org/abstract_S0013091507000120
DOI:

10.1017/S0013091507000120

Notas: ISI, SCOPUS