On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding

Bendahmane M.; Burger, R; Ruiz-Baier, R; Urbano JM

Abstract

This paper addresses the existence and regularity of weak solutions for a fully parabolic model of chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra nonlinearity represented by a p-Laplacian diffusion term. To prove the existence of weak solutions, a Schauder fixed-point argument is applied to a regularized problem and the compactness method is used to pass to the limit. The local Hölder regularity of weak solutions is established using the method of intrinsic scaling. The results are a contribution to showing, qualitatively, to what extent the properties of the classical Keller-Segel chemotaxis models are preserved in a more general setting. Some numerical examples illustrate the model. Copyright © 2008 John Wiley and Sons, Ltd.

Más información

Título según WOS: On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding
Título según SCOPUS: On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding
Título de la Revista: MATHEMATICAL METHODS IN THE APPLIED SCIENCES
Volumen: 32
Número: 13
Editorial: Wiley
Fecha de publicación: 2009
Página de inicio: 1704
Página final: 1737
Idioma: English
URL: http://doi.wiley.com/10.1002/mma.1107
DOI:

10.1002/mma.1107

Notas: ISI, SCOPUS