Robust autoregressive modeling and its diagnostic analytics with a COVID-19 related application

Abstract

Autoregressive models in time series are useful in various areas. In this article, we propose a skew-t autoregressive model. We estimate its parameters using the expectation-maximization (EM) method and develop the influence methodology based on local perturbations for its validation. We obtain the normal curvatures for four perturbation strategies to identify influential observations, and then to assess their performance through Monte Carlo simulations. An example of financial data analysis is presented to study daily log-returns for Brent crude futures and investigate possible impact by the COVID-19 pandemic.

Más información

Título según WOS: Robust autoregressive modeling and its diagnostic analytics with a COVID-19 related application
Título de la Revista: JOURNAL OF APPLIED STATISTICS
Volumen: 51
Número: 7
Editorial: TAYLOR & FRANCIS LTD
Fecha de publicación: 2024
Página de inicio: 1318
Página final: 1343
DOI:

10.1080/02664763.2023.2198178

Notas: ISI