Limit laws for the cumulative number of ties for the maximum in a random sequence

Gouet R.; López FJ; Sanz G.

Abstract

Let { Xn, n = 1 } be a sequence of independent identically distributed random variables, taking nonnegative integer values. An observation Xn is a tie for the maximum if Xn = max { X1, ..., Xn - 1 }. In this paper, we obtain weak and strong laws of large numbers and central limit theorems for the cumulative number of ties for the maximum among the first n observations. © 2009 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Limit laws for the cumulative number of ties for the maximum in a random sequence
Título según SCOPUS: Limit laws for the cumulative number of ties for the maximum in a random sequence
Título de la Revista: JOURNAL OF STATISTICAL PLANNING AND INFERENCE
Volumen: 139
Número: 9
Editorial: Elservier
Fecha de publicación: 2009
Página de inicio: 2988
Página final: 3000
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0378375809000305
DOI:

10.1016/j.jspi.2009.02.001

Notas: ISI, SCOPUS