Limit laws for the cumulative number of ties for the maximum in a random sequence
Abstract
Let { Xn, n = 1 } be a sequence of independent identically distributed random variables, taking nonnegative integer values. An observation Xn is a tie for the maximum if Xn = max { X1, ..., Xn - 1 }. In this paper, we obtain weak and strong laws of large numbers and central limit theorems for the cumulative number of ties for the maximum among the first n observations. © 2009 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Limit laws for the cumulative number of ties for the maximum in a random sequence |
Título según SCOPUS: | Limit laws for the cumulative number of ties for the maximum in a random sequence |
Título de la Revista: | JOURNAL OF STATISTICAL PLANNING AND INFERENCE |
Volumen: | 139 |
Número: | 9 |
Editorial: | Elservier |
Fecha de publicación: | 2009 |
Página de inicio: | 2988 |
Página final: | 3000 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0378375809000305 |
DOI: |
10.1016/j.jspi.2009.02.001 |
Notas: | ISI, SCOPUS |