Limit laws for the cumulative number of ties for the maximum in a random sequence
Abstract
Let { Xn, n = 1 } be a sequence of independent identically distributed random variables, taking nonnegative integer values. An observation Xn is a tie for the maximum if Xn = max { X1, ..., Xn - 1 }. In this paper, we obtain weak and strong laws of large numbers and central limit theorems for the cumulative number of ties for the maximum among the first n observations. © 2009 Elsevier B.V. All rights reserved.
Más información
| Título según WOS: | Limit laws for the cumulative number of ties for the maximum in a random sequence |
| Título según SCOPUS: | Limit laws for the cumulative number of ties for the maximum in a random sequence |
| Título de la Revista: | JOURNAL OF STATISTICAL PLANNING AND INFERENCE |
| Volumen: | 139 |
| Número: | 9 |
| Editorial: | Elservier |
| Fecha de publicación: | 2009 |
| Página de inicio: | 2988 |
| Página final: | 3000 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0378375809000305 |
| DOI: |
10.1016/j.jspi.2009.02.001 |
| Notas: | ISI, SCOPUS |