Prym-Tyurin varieties via Hecke algebras
Abstract
Let G denote a finite group and : Z ? Y a Galois covering of smooth projective curves with Galois group G. For every subgroup H of G there is a canonical action of the corresponding Hecke algebra H\G/H on the Jacobian of the curve X = Z/H. To each rational irreducible representation of G we associate an idempotent in the Hecke algebra, which induces a correspondence of the curve X and thus an abelian subvariety P of the Jacobian JX. We give sufficient conditions on , H, and the action of G on Z for P to be a Prym-Tyurin variety. We obtain many new families of Prym-Tyurin varieties of arbitrary exponent in this way. © 2009 Walter de Gruyter Berlin · New York.
Más información
| Título según WOS: | Prym-Tyurin varieties via Hecke algebras |
| Título según SCOPUS: | Prym-tyurin varieties via Hecke algebras |
| Título de la Revista: | JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK |
| Volumen: | 634 |
| Número: | 634 |
| Editorial: | WALTER DE GRUYTER GMBH |
| Fecha de publicación: | 2009 |
| Página de inicio: | 209 |
| Página final: | 234 |
| Idioma: | English |
| URL: | http://www.degruyter.com/view/j/crll.2009.2009.issue-634/crelle.2009.073/crelle.2009.073.xml |
| DOI: |
10.1515/CRELLE.2009.073 |
| Notas: | ISI, SCOPUS |