Prym-Tyurin varieties via Hecke algebras

Carocca A.; Lange H.; Rodriguez, RE; Rojas, AM

Abstract

Let G denote a finite group and : Z ? Y a Galois covering of smooth projective curves with Galois group G. For every subgroup H of G there is a canonical action of the corresponding Hecke algebra H\G/H on the Jacobian of the curve X = Z/H. To each rational irreducible representation of G we associate an idempotent in the Hecke algebra, which induces a correspondence of the curve X and thus an abelian subvariety P of the Jacobian JX. We give sufficient conditions on , H, and the action of G on Z for P to be a Prym-Tyurin variety. We obtain many new families of Prym-Tyurin varieties of arbitrary exponent in this way. © 2009 Walter de Gruyter Berlin · New York.

Más información

Título según WOS: Prym-Tyurin varieties via Hecke algebras
Título según SCOPUS: Prym-tyurin varieties via Hecke algebras
Título de la Revista: JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
Volumen: 634
Número: 634
Editorial: WALTER DE GRUYTER GMBH
Fecha de publicación: 2009
Página de inicio: 209
Página final: 234
Idioma: English
URL: http://www.degruyter.com/view/j/crll.2009.2009.issue-634/crelle.2009.073/crelle.2009.073.xml
DOI:

10.1515/CRELLE.2009.073

Notas: ISI, SCOPUS