Prym-Tyurin varieties using self-products of groups
Abstract
Given Prym-Tyurin varieties of exponent q with respect to a finite group G, a subgroup H and a set of rational irreducible representations of G satisfying some additional properties, we construct a Prym-Tyurin variety of exponent [G : H] q in a natural way. We study an example of this result, starting from the dihedral group Dp for any odd prime p. This generalizes the construction of [H. Lange, S. Recillas, A.M. Rojas, A family of Prym-Tyurin varieties of exponent 3, J. Algebra 289 (2005) 594-613] for p = 3. Finally, we compute the isogeny decomposition of the Jacobian of the curve underlying the above mentioned example. © 2009 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Prym-Tyurin varieties using self-products of groups |
| Título según SCOPUS: | Prym-Tyurin varieties using self-products of groups |
| Título de la Revista: | JOURNAL OF ALGEBRA |
| Volumen: | 322 |
| Número: | 4 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2009 |
| Página de inicio: | 1251 |
| Página final: | 1272 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0021869309002737 |
| DOI: |
10.1016/j.jalgebra.2009.05.013 |
| Notas: | ISI, SCOPUS |