Performance Analysis of Gaussian Process Regression in the Temperature Estimation of Fiber Bragg Grating Sensors
Abstract
The performance of Gaussian process regression for temperature estimation using fiber Bragg grating sensors is investigated. Using experiment- and simulation-based training, the estimated temperature uncertainty (standard deviation) and offset are analyzed versus different measurement parameters.
Más información
Título según SCOPUS: | ID SCOPUS_ID:85146725984 Not found in local SCOPUS DB |
Fecha de publicación: | 2022 |
DOI: |
10.1364/OFS.2022.TH4.49 |
Notas: | SCOPUS |