A geostatistical approach to optimize sampling designs for local forest inventories

Hernández J.; Emery, X

Abstract

In forest management, it is of interest to obtain detailed inventories such that the local prediction errors on forest attributes are less than a prespecified threshold, while keeping the number of ground samples as low as possible. Given an initial sampling design, we propose an algorithm to determine the additional sample locations. The algorithm relies on two tools: geostatistical simulation, which allows measuring the uncertainty in the values of the attribute of interest, and simulated annealing, which allows finding an infill design that minimizes a given objective function. The proposed approach is applied to a data set from a Prosopis spp. plantation located in the Atacama Desert, in which the measured attribute is the rate of tree survival.

Más información

Título según WOS: A geostatistical approach to optimize sampling designs for local forest inventories
Título según SCOPUS: A geostatistical approach to optimize sampling designs for local forest inventories
Título de la Revista: CANADIAN JOURNAL OF FOREST RESEARCH
Volumen: 39
Número: 8
Editorial: Canadian Science Publishing
Fecha de publicación: 2009
Página de inicio: 1465
Página final: 1474
Idioma: English
URL: http://www.nrcresearchpress.com/doi/abs/10.1139/X09-048
DOI:

10.1139/X09-048

Notas: ISI, SCOPUS