DYNAMICS OF AN INTERFACE CONNECTING A STRIPE PATTERN AND A UNIFORM STATE: AMENDED NEWELL-WHITEHEAD-SEGEL EQUATION
Abstract
The dynamics of an interface connecting a stationary stripe pattern with a homogeneous state is studied. The conventional approach which describes this interface, NewellWhiteheadSegel amplitude equation, does not account for the rich dynamics exhibited by these interfaces. By amending this amplitude equation with a nonresonate term, we can describe this interface and its dynamics in a unified manner. This model exhibits a rich and complex transversal dynamics at the interface, including front propagations, transversal patterns, locking phenomenon, and transversal localized structures. © 2009 World Scientific Publishing Company.
Más información
Título según WOS: | DYNAMICS OF AN INTERFACE CONNECTING A STRIPE PATTERN AND A UNIFORM STATE: AMENDED NEWELL-WHITEHEAD-SEGEL EQUATION |
Título según SCOPUS: | Dynamics of an interface connecting a stripe pattern and a uniform state: Amended newell-whitehead-segel equation |
Título de la Revista: | International Journal of Bifurcation and Chaos |
Volumen: | 19 |
Número: | 8 |
Editorial: | World Scientific Publishing Co. Pte Ltd |
Fecha de publicación: | 2009 |
Página de inicio: | 2801 |
Página final: | 2812 |
Idioma: | eng |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0218127409024499 |
DOI: |
10.1142/S0218127409024499 |
Notas: | ISI, SCOPUS |