Steepest Geometric Descent for Regularized Quasiconvex Functions

Daniilidis, Aris

Abstract

We establish existence of steepest descent curves emanating from almost every point of a regular locally Lipschitz quasiconvex functions, where regularity means that the sweeping process flow induced by the sublevel sets is reversible. We then use max-convolution to regularize general quasiconvex functions and obtain a result of the same nature in a more general setting. © The Author(s) 2024.

Más información

Título según WOS: Steepest Geometric Descent for Regularized Quasiconvex Functions
Título según SCOPUS: Steepest Geometric Descent for Regularized Quasiconvex Functions
Título de la Revista: Set-Valued and Variational Analysis
Volumen: 32
Número: 3
Editorial: Springer Science and Business Media B.V.
Fecha de publicación: 2024
Idioma: English
DOI:

10.1007/s11228-024-00731-5

Notas: ISI, SCOPUS