Steepest Geometric Descent for Regularized Quasiconvex Functions
Abstract
We establish existence of steepest descent curves emanating from almost every point of a regular locally Lipschitz quasiconvex functions, where regularity means that the sweeping process flow induced by the sublevel sets is reversible. We then use max-convolution to regularize general quasiconvex functions and obtain a result of the same nature in a more general setting. © The Author(s) 2024.
Más información
| Título según WOS: | Steepest Geometric Descent for Regularized Quasiconvex Functions |
| Título según SCOPUS: | Steepest Geometric Descent for Regularized Quasiconvex Functions |
| Título de la Revista: | Set-Valued and Variational Analysis |
| Volumen: | 32 |
| Número: | 3 |
| Editorial: | Springer Science and Business Media B.V. |
| Fecha de publicación: | 2024 |
| Idioma: | English |
| DOI: |
10.1007/s11228-024-00731-5 |
| Notas: | ISI, SCOPUS |