Spectra of copies of a generalized Bethe tree attached to any graph

Rojo, O

Abstract

A generalized Bethe tree is a rooted unweighted tree in which vertices at the same level have the same degree. Let G be any connected graph. Let G {B} be the graph obtained from G by attaching a generalized Bethe tree B, by its root, to each vertex of G. We characterize completely the eigenvalues of the signless Laplacian, Laplacian and adjacency matrices of the graph G {B} including results on the eigenvalue multiplicities. Finally, for the Laplacian and signless Laplacian matrices, we recall a procedure to compute a tight upper bound on the algebraic connectivity of G {B} as well as on the smallest eigenvalue of the signless Laplacian matrix of G {B} whenever G is a non-bipartite graph. © 2009 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Spectra of copies of a generalized Bethe tree attached to any graph
Título según SCOPUS: Spectra of copies of a generalized Bethe tree attached to any graph
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 431
Número: 05-jul
Editorial: Elsevier Science Inc.
Fecha de publicación: 2009
Página de inicio: 863
Página final: 882
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379509001785
DOI:

10.1016/j.laa.2009.03.041

Notas: ISI, SCOPUS