CHARACTERIZING PROBABILISTIC STRUCTURE IN LEARNING USING INFORMATION SUFFICIENCY
Abstract
We use the concept of information sufficiency (IS) to represent probabilistic structures in machine learning (ML). Our main result provides a functional expression that charac-terizes the class of probabilistic models consistent with an IS encoder-decoder latent predictive structure. This result formally justifies the encoder-decoder forward stages many modern ML architectures adopt to learn latent (compressed) representations in data. To illustrate IS as a realistic and rele-vant model assumption, we revisit some known ML concepts and present some interesting new examples: invariant, robust, sparse, and digital models. © 2024 IEEE.
Más información
| Título según WOS: | CHARACTERIZING PROBABILISTIC STRUCTURE IN LEARNING USING INFORMATION SUFFICIENCY |
| Título según SCOPUS: | Characterizing Probabilistic Structure in Learning Using Information Sufficiency |
| Título de la Revista: | IEEE International Workshop on Machine Learning for Signal Processing, MLSP |
| Editorial: | IEEE Computer Society |
| Fecha de publicación: | 2024 |
| Año de Inicio/Término: | 22-25 September 2024 |
| Idioma: | English |
| URL: | 10.1109/MLSP58920.2024.10734735 |
| DOI: |
10.1109/MLSP58920.2024.10734735 |
| Notas: | ISI, SCOPUS |