Characterizing Probabilistic Structure in Learning Using Information Sufficiency
Abstract
We use the concept of information sufficiency (IS) to represent probabilistic structures in machine learning (ML). Our main result provides a functional expression that characterizes the class of probabilistic models consistent with an IS encoder-decoder latent predictive structure. This result formally justifies the encoder-decoder forward stages many modern ML architectures adopt to learn latent (compressed) representations in data. To illustrate IS as a realistic and relevant model assumption, we revisit some known ML concepts and present some interesting new examples: invariant, robust, sparse, and digital models.
Más información
Título según WOS: | CHARACTERIZING PROBABILISTIC STRUCTURE IN LEARNING USING INFORMATION SUFFICIENCY |
Fecha de publicación: | 2024 |
Año de Inicio/Término: | 22-25 September 2024 |
Idioma: | English |
URL: | 10.1109/MLSP58920.2024.10734735 |
DOI: |
10.1109/MLSP58920.2024.10734735 |
Notas: | ISI |