Cooperative Decision-Making Approach for Multiobjective Finite Control Set Model Predictive Control Without Weighting Parameters

Wang, Fengxiang; Kennel, Ralph

Abstract

Finite control set model predictive control (FCS-MPC) has gained increasing popularity as an emerging control strategy for electrical drive systems. However, it is still a challenging task to optimize weighting parameters, as multiple objectives are involved in the customized cost function. A cooperative decision-making approach for FCS-MPC is proposed in this article, to solve the optimization problems with manifold control objectives. By splitting the cost function, the optimization problem underlying multiobjective FCS-MPC is separated into a series of decomposed optimization problems. By doing so, the dimension of the decomposed problem is reduced to one. To collect the information for decision-making, an efficient sorting algorithm is applied for each control objective. The theory behind the cooperative decision-making approach is comprehensively analyzed, to validate both the effectiveness and efficiency of the proposed scheme. More specifically, the highlight is the adaptive mechanism on the number of desired candidates, to obtain a decent performance for torque and flux. The candidate that minimizes the switching frequency is selected as the optimal. The proposed scheme is experimentally verified and compared with the existing FCS-MPC without weighting parameters.

Más información

Título según WOS: Cooperative Decision-Making Approach for Multiobjective Finite Control Set Model Predictive Control Without Weighting Parameters
Título de la Revista: IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
Volumen: 71
Número: 5
Editorial: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Fecha de publicación: 2024
Página de inicio: 4495
Página final: 4506
DOI:

10.1109/TIE.2023.3283689

Notas: ISI