Discrete Calderon problem with partial data

Lecaros, Rodrigo; Ortega, Jaime H; De Teresa, Luz

Abstract

In this work, we are interested in analyzing the well-known Calderon problem, which is an inverse boundary value problem of determining a coefficient function of an elliptic partial differential equation from the knowledge of the associated Dirichlet-to-Neumann map on the boundary of a domain. We consider the discrete version of the Calderon inverse problem with partial boundary data; in particular, we establish logarithmic stability estimates for the discrete Calderon problem, in dimension d ? 3, for the discrete H-r-norm on the boundary under suitable a priori bounds. The proof of our main result is based on a new discrete Carleman estimate for the discrete Laplacian operator with boundary observations.

Más información

Título según WOS: Discrete Calderon problem with partial data
Título de la Revista: INVERSE PROBLEMS
Volumen: 39
Número: 3
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2023
DOI:

10.1088/1361-6420/acb0f8

Notas: ISI