Decomposition methods for Wasserstein-based data-driven distributionally robust problems
Abstract
We study decomposition methods for two-stage data-driven Wasserstein-based DROs with right-hand-sided uncertainty and rectangular support. We propose a novel finite reformulation that explores the rectangular uncertainty support to develop and test five new different decomposition schemes: Column-Constraint Generation, Single-cut and Multi-cut Benders, as well as Regularized Single-cut and Multi-cut Benders. We compare the efficiency of the proposed methods for a unit commitment problem with 14 and 54 thermal generators whose uncertainty vector differs from a 24 to 240-dimensional array.
Más información
Título según WOS: | Decomposition methods for Wasserstein-based data-driven distributionally robust problems |
Título según SCOPUS: | ID SCOPUS_ID:85111692846 Not found in local SCOPUS DB |
Título de la Revista: | OPERATIONS RESEARCH LETTERS |
Volumen: | 49 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2021 |
Página de inicio: | 696 |
Página final: | 702 |
DOI: |
10.1016/J.ORL.2021.07.007 |
Notas: | ISI, SCOPUS - WoS |