Decomposition methods for Wasserstein-based data-driven distributionally robust problems

Abstract

We study decomposition methods for two-stage data-driven Wasserstein-based DROs with right-hand-sided uncertainty and rectangular support. We propose a novel finite reformulation that explores the rectangular uncertainty support to develop and test five new different decomposition schemes: Column-Constraint Generation, Single-cut and Multi-cut Benders, as well as Regularized Single-cut and Multi-cut Benders. We compare the efficiency of the proposed methods for a unit commitment problem with 14 and 54 thermal generators whose uncertainty vector differs from a 24 to 240-dimensional array.

Más información

Título según WOS: Decomposition methods for Wasserstein-based data-driven distributionally robust problems
Título según SCOPUS: ID SCOPUS_ID:85111692846 Not found in local SCOPUS DB
Título de la Revista: OPERATIONS RESEARCH LETTERS
Volumen: 49
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2021
Página de inicio: 696
Página final: 702
DOI:

10.1016/J.ORL.2021.07.007

Notas: ISI, SCOPUS - WoS