Decomposition methods for Wasserstein-based data-driven distributionally robust problems
Abstract
We study decomposition methods for two-stage data-driven Wasserstein-based DROs with right-hand-sided uncertainty and rectangular support. We propose a novel finite reformulation that explores the rectangular uncertainty support to develop and test five new different decomposition schemes: Column-Constraint Generation, Single-cut and Multi-cut Benders, as well as Regularized Single-cut and Multi-cut Benders. We compare the efficiency of the proposed methods for a unit commitment problem with 14 and 54 thermal generators whose uncertainty vector differs from a 24 to 240-dimensional array.
Más información
| Título según WOS: | Decomposition methods for Wasserstein-based data-driven distributionally robust problems |
| Título según SCOPUS: | ID SCOPUS_ID:85111692846 Not found in local SCOPUS DB |
| Volumen: | 49 |
| Fecha de publicación: | 2021 |
| Página de inicio: | 696 |
| Página final: | 702 |
| DOI: |
10.1016/J.ORL.2021.07.007 |
| Notas: | ISI, SCOPUS - WoS |