Artificial intelligence in diagnosing upper limb musculoskeletal disorders: a systematic review and meta-analysis of diagnostic tests

Abstract

center dot Purpose: The integration of artificial intelligence (AI) in radiology has revolutionized diagnostics, optimizing precision and decision-making. Specifically in musculoskeletal imaging, AI tools can improve accuracy for upper extremity pathologies. This study aimed to assess the diagnostic performance of AI models in detecting musculoskeletal pathologies of the upper extremity using different imaging modalities. center dot Methods: A meta-analysis was conducted, involving searches on MEDLINE/PubMed, SCOPUS, Cochrane Library, Lilacs, and SciELO. The quality of the studies was assessed using the QUADAS-2 tool. Diagnostic accuracy measures including sensitivity, specificity, diagnostic odds ratio (DOR), positive and negative likelihood ratios (PLR, NLR), area under the curve (AUC), and summary receiver operating characteristic were pooled using a random-effects model. Heterogeneity and subgroup analyses were also included. All statistical analyses and plots were performed using the R software package. center dot Results: Thirteen models from ten articles were analyzed. The sensitivity and specificity of the AI models to detect musculoskeletal conditions in the upper extremity were 0.926 (95% CI: 0.900; 0.945) and 0.908 (95% CI: 0.810; 0.958). The PLR, NLR, lnDOR, and the AUC estimates were found to be 19.18 (95% CI: 8.90; 29.34), 0.11 (95% CI: 0.18; 0.46), 4.62 (95% CI: 4.02; 5.22) with a ( P < 0.001), and 95%, respectively. center dot Conclusion: The AI models exhibited strong univariate and bivariate performance in detecting both positive and negative cases within the analyzed dataset of musculoskeletal pathologies in the upper extremity.

Más información

Título según WOS: Artificial intelligence in diagnosing upper limb musculoskeletal disorders: a systematic review and meta-analysis of diagnostic tests
Título según SCOPUS: ID SCOPUS_ID:85190693898 Not found in local SCOPUS DB
Título de la Revista: EFORT Open Reviews
Volumen: 9
Fecha de publicación: 2024
Página de inicio: 241
Página final: 251
DOI:

10.1530/EOR-23-0174

Notas: ISI, SCOPUS