Design and assessment of a concentrating solar thermal system for industrial process heat with a copper slag packed-bed thermal energy storage
Abstract
Decarbonising the industrial sector is a key part of climate change mitigation targets, and Solar Heat for Industrial Process (SHIP) is a promising technology to achieve this. However, one of the drawbacks of SHIP systems is that they rely on an intermittent energy source. Therefore, sensible energy storage has emerged as a potential solution. In addition, solid byproducts have been proposed as a low-cost but effective material for thermal energy storage (TES). This work presents a SHIP system model coupled with a copper slag-packed-bed TES (PBTES) model using air as heat transfer fluid. The TES has been implemented to preheat the makeup water of the tank where steam is generated. A system design was carried out using a parametric analysis to find a solar field size and a corresponding TES volume. The resulting system was simulated, and the operating variables were analysed in detail. The results show that it is possible to generate 20% more energy due to the storage system. Additionally, a techno-economic analysis indicates that the SHIP with PBTES system results in a payback period of 14 years and a savings of CO2 emissions of 30 t CO2.
Más información
Título según WOS: | Design and assessment of a concentrating solar thermal system for industrial process heat with a copper slag packed-bed thermal energy storage |
Título de la Revista: | APPLIED ENERGY |
Volumen: | 376 |
Editorial: | ELSEVIER SCI LTD |
Fecha de publicación: | 2024 |
DOI: |
10.1016/j.apenergy.2024.124280 |
Notas: | ISI |