Admissible Orders on Fuzzy Numbers
Abstract
From the more than two hundred partial orders for fuzzy numbers proposed in the literature, only a few are total. In this article, we introduce the notion of admissible order for fuzzy numbers equipped with a partial order, i.e., a total order which refines the partial order. In particular, it is given special attention to the partial order proposed by Klir and Yuan in 1995. Moreover, we propose a method to construct admissible orders on fuzzy numbers in terms of linear orders defined for intervals considering a strictly increasing upper dense sequence, proving that this order is admissible for a given partial order. Finally, we use admissible orders to ranking the path costs in fuzzy weighted graphs.
Más información
| Título según WOS: | Admissible Orders on Fuzzy Numbers |
| Título de la Revista: | IEEE TRANSACTIONS ON FUZZY SYSTEMS |
| Volumen: | 30 |
| Número: | 11 |
| Editorial: | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
| Fecha de publicación: | 2022 |
| Página de inicio: | 4788 |
| Página final: | 4799 |
| DOI: |
10.1109/TFUZZ.2022.3160326 |
| Notas: | ISI |