A Case Study of Multiple Wave Solutions in a Reaction-Diffusion System Using Invariant Manifolds and Global Bifurcations
Abstract
A thorough analysis is performed to find traveling waves in a qualitative reaction-diffusion system inspired by a predator-prey model. We provide rigorous results coming from a standard local stability analysis, numerical bifurcation analysis, and relevant computations of invariant manifolds to exhibit homoclinic and heteroclinic connections, and periodic orbits in the associated traveling wave system with four components. In so doing, we present and describe a wide range of different traveling wave solutions. In addition, homoclinic chaos is manifested via both saddle-focus and focus-focus bifurcations as well as a Belyakov point. An actual computation of global invariant manifolds near a focus-focus homoclinic bifurcation is also presented to unravel a multiplicity of wave solutions in the model.
Más información
Título según WOS: | A Case Study of Multiple Wave Solutions in a Reaction-Diffusion System Using Invariant Manifolds and Global Bifurcations |
Título según SCOPUS: | ID SCOPUS_ID:85162260325 Not found in local SCOPUS DB |
Título de la Revista: | SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS |
Volumen: | 22 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2023 |
Página de inicio: | 918 |
Página final: | 950 |
DOI: |
10.1137/22M1474709 |
Notas: | ISI, SCOPUS |