A wrapper method for feature selection using Support Vector Machines
Abstract
We introduce a novel wrapper Algorithm for Feature Selection, using Support Vector Machines with kernel functions. Our method is based on a sequential backward selection, using the number of errors in a validation subset as the measure to decide which feature to remove in each iteration. We compare our approach with other algorithms like a filter method or Recursive Feature Elimination SVM to demonstrate its effectiveness and efficiency. © 2009 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | A wrapper method for feature selection using Support Vector Machines |
Título según SCOPUS: | A wrapper method for feature selection using Support Vector Machines |
Título de la Revista: | INFORMATION SCIENCES |
Volumen: | 179 |
Número: | 13 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2009 |
Página de inicio: | 2208 |
Página final: | 2217 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0020025509000917 |
DOI: |
10.1016/j.ins.2009.02.014 |
Notas: | ISI, SCOPUS |