A normalization formula for the Jack polynomials in superspace and an identity on partitions

Lapointe, L; Le Borgne, Y; Nadeau, P

Abstract

We prove a conjecture of [3] giving a closed form formula for the norm of the Jack polynomials in superspace with respect to a certain scalar product. The proof is mainly combinatorial and relies on the explicit expression in terms of admissible tableaux of the non-symmetric Jack polynomials. In the final step of the proof appears an identity on weighted sums of partitions that we demonstrate using the methods of Gessel-Viennot.

Más información

Título según WOS: A normalization formula for the Jack polynomials in superspace and an identity on partitions
Título según SCOPUS: A normalization formula for the Jack polynomials in superspace and an identity on partitions
Título de la Revista: ELECTRONIC JOURNAL OF COMBINATORICS
Volumen: 16
Número: 1
Editorial: Electronic Journal of Combinatorics
Fecha de publicación: 2009
Idioma: English
Notas: ISI, SCOPUS