A normalization formula for the Jack polynomials in superspace and an identity on partitions
Abstract
We prove a conjecture of [3] giving a closed form formula for the norm of the Jack polynomials in superspace with respect to a certain scalar product. The proof is mainly combinatorial and relies on the explicit expression in terms of admissible tableaux of the non-symmetric Jack polynomials. In the final step of the proof appears an identity on weighted sums of partitions that we demonstrate using the methods of Gessel-Viennot.
Más información
| Título según WOS: | A normalization formula for the Jack polynomials in superspace and an identity on partitions |
| Título según SCOPUS: | A normalization formula for the Jack polynomials in superspace and an identity on partitions |
| Título de la Revista: | ELECTRONIC JOURNAL OF COMBINATORICS |
| Volumen: | 16 |
| Número: | 1 |
| Editorial: | Electronic Journal of Combinatorics |
| Fecha de publicación: | 2009 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |