Smoothing properties for a coupled system of nonlinear evolution dispersive equations
Abstract
We study the smoothness properties of solutions to the coupled system of equations of Korteweg-de Vries type. We show that the equations dispersive nature leads to a gain in regularity for the solution. In particular, if the initial data (u0, v0 possesses certain regularity and sufficient decay as x ? 8, then the solution (u(t). v(t)) will be smoother than (u0, v0) for 0 < t = T where T is the existence time of the solution. © 2009 Royal Netherlands Academy of Arts and Sciences.
Más información
Título según WOS: | Smoothing properties for a coupled system of nonlinear evolution dispersive equations |
Título según SCOPUS: | Smoothing properties for a coupled system of nonlinear evolution dispersive equations |
Título de la Revista: | INDAGATIONES MATHEMATICAE-NEW SERIES |
Volumen: | 20 |
Número: | 2 |
Editorial: | Elsevier |
Fecha de publicación: | 2009 |
Página de inicio: | 285 |
Página final: | 327 |
Idioma: | English |
Notas: | ISI, SCOPUS |