Smoothing properties for a coupled system of nonlinear evolution dispersive equations
Abstract
We study the smoothness properties of solutions to the coupled system of equations of Korteweg-de Vries type. We show that the equations dispersive nature leads to a gain in regularity for the solution. In particular, if the initial data (u0, v0 possesses certain regularity and sufficient decay as x ? 8, then the solution (u(t). v(t)) will be smoother than (u0, v0) for 0 < t = T where T is the existence time of the solution. © 2009 Royal Netherlands Academy of Arts and Sciences.
Más información
| Título según WOS: | Smoothing properties for a coupled system of nonlinear evolution dispersive equations |
| Título según SCOPUS: | Smoothing properties for a coupled system of nonlinear evolution dispersive equations |
| Título de la Revista: | INDAGATIONES MATHEMATICAE-NEW SERIES |
| Volumen: | 20 |
| Número: | 2 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2009 |
| Página de inicio: | 285 |
| Página final: | 327 |
| Idioma: | English |
| Notas: | ISI, SCOPUS |