Smooth interval maps have symbolic extensions
Abstract
We prove that if X denotes the interval or the circle then every transformation T:X?X of class C r , where r>1 is not necessarily an integer, admits a symbolic extension, i.e., every such transformation is a topological factor of a subshift over a finite alphabet. This is done using the theory of entropy structure. For such transformations we control the entropy structure by providing an upper bound, in terms of Lyapunov exponents, of local entropy in the sense of Newhouse of an ergodic measure ? near an invariant measure µ (the antarctic theorem). This bound allows us to estimate the so-called symbolic extension entropy function on invariant measures (the main theorem), and as a consequence, to estimate the topological symbolic extension entropy; i.e., a number such that there exists a symbolic extension with topological entropy arbitrarily close to that number. This last estimate coincides, in dimension 1, with a conjecture stated by Downarowicz and Newhouse 13, Conjecture 1.2. The passage from the antarctic theorem to the main theorem is applicable to any topological dynamical system, not only to smooth interval or circle maps. © 2008 Springer-Verlag.
Más información
Título según WOS: | Smooth interval maps have symbolic extensions |
Título según SCOPUS: | Smooth interval maps have symbolic extensions |
Título de la Revista: | INVENTIONES MATHEMATICAE |
Volumen: | 176 |
Número: | 3 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2009 |
Página de inicio: | 617 |
Página final: | 636 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00222-008-0172-4 |
DOI: |
10.1007/s00222-008-0172-4 |
Notas: | ISI, SCOPUS |