Frequency of digits in the Luroth expansion

Barreira, L; Iommi G.

Abstract

In this note we consider the Lüroth expansion of a real number, and we study the Hausdorff dimension of a class of sets defined in terms of the frequencies of digits in the expansion. We also study the speed at which the approximants obtained from the Lüroth expansion converge. In addition, we describe the multifractal properties of the level sets of the Lyapunov exponent, which measures the exponential speed of approximation obtained from the approximants. Finally, we describe the relation of the Lüroth expansion with the continued fraction expansion and the ß-expansion. We remark that our work is still another application of the theory of dynamical systems to number theory. © 2008 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Frequency of digits in the Luroth expansion
Título según SCOPUS: Frequency of digits in the Lüroth expansion
Título de la Revista: JOURNAL OF NUMBER THEORY
Volumen: 129
Número: 6
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2009
Página de inicio: 1479
Página final: 1490
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022314X08001327
DOI:

10.1016/j.jnt.2008.06.002

Notas: ISI, SCOPUS