Frequency of digits in the Luroth expansion
Abstract
In this note we consider the Lüroth expansion of a real number, and we study the Hausdorff dimension of a class of sets defined in terms of the frequencies of digits in the expansion. We also study the speed at which the approximants obtained from the Lüroth expansion converge. In addition, we describe the multifractal properties of the level sets of the Lyapunov exponent, which measures the exponential speed of approximation obtained from the approximants. Finally, we describe the relation of the Lüroth expansion with the continued fraction expansion and the ß-expansion. We remark that our work is still another application of the theory of dynamical systems to number theory. © 2008 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Frequency of digits in the Luroth expansion |
Título según SCOPUS: | Frequency of digits in the Lüroth expansion |
Título de la Revista: | JOURNAL OF NUMBER THEORY |
Volumen: | 129 |
Número: | 6 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2009 |
Página de inicio: | 1479 |
Página final: | 1490 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022314X08001327 |
DOI: |
10.1016/j.jnt.2008.06.002 |
Notas: | ISI, SCOPUS |