Ultrametric and Tree Potential

Dellacherie C.; Martínez, S.; Martin, JS

Abstract

In this article we study which infinite matrices are potential matrices. We tackle this problem in the ultrametric framework by studying infinite tree matrices and ultrametric matrices. For each tree matrix, we show the existence of an associated symmetric random walk and study its Green potential. We provide a representation theorem for harmonic functions that includes simple expressions for any increasing harmonic function and the Martin kernel. For ultrametric matrices, we supply probabilistic conditions to study its potential properties when immersed in its minimal tree matrix extension. © 2009 Springer Science+Business Media, LLC.

Más información

Título según WOS: Ultrametric and Tree Potential
Título según SCOPUS: Ultrametric and tree potential
Título de la Revista: JOURNAL OF THEORETICAL PROBABILITY
Volumen: 22
Número: 2
Editorial: Springer
Fecha de publicación: 2009
Página de inicio: 311
Página final: 347
Idioma: English
URL: http://link.springer.com/10.1007/s10959-009-0209-7
DOI:

10.1007/s10959-009-0209-7

Notas: ISI, SCOPUS