Ultrametric and Tree Potential
Abstract
In this article we study which infinite matrices are potential matrices. We tackle this problem in the ultrametric framework by studying infinite tree matrices and ultrametric matrices. For each tree matrix, we show the existence of an associated symmetric random walk and study its Green potential. We provide a representation theorem for harmonic functions that includes simple expressions for any increasing harmonic function and the Martin kernel. For ultrametric matrices, we supply probabilistic conditions to study its potential properties when immersed in its minimal tree matrix extension. © 2009 Springer Science+Business Media, LLC.
Más información
Título según WOS: | Ultrametric and Tree Potential |
Título según SCOPUS: | Ultrametric and tree potential |
Título de la Revista: | JOURNAL OF THEORETICAL PROBABILITY |
Volumen: | 22 |
Número: | 2 |
Editorial: | Springer |
Fecha de publicación: | 2009 |
Página de inicio: | 311 |
Página final: | 347 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s10959-009-0209-7 |
DOI: |
10.1007/s10959-009-0209-7 |
Notas: | ISI, SCOPUS |