On the complex structure of positive solutions to Matukuma-type equations
Abstract
In this article we consider the Matukuma type equation(0.1)? u + K (r) up = 0 in RN for positive radially symmetric solutions. We assume that N > 2, p > 1 and K (r) = 0, for all r = 0. When K satisfies some appropriate monotonicity assumption, the set of positive solutions of (0.1) is well understood. In this work we propose a constructive approach to start the analysis of the structure of the set of positive solutions when this monotonicity assumption fails. We construct some functions K so that the equation exhibits a very complex structure. This function K depends on a set of four parameters: p, N and the limits at zero and infinity of certain quotient describing the growth of K. © 2008 Elsevier Masson SAS. All rights reserved.
Más información
Título según WOS: | On the complex structure of positive solutions to Matukuma-type equations |
Título según SCOPUS: | On the complex structure of positive solutions to Matukuma-type equations |
Título de la Revista: | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
Volumen: | 26 |
Número: | 3 |
Editorial: | GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Fecha de publicación: | 2009 |
Página de inicio: | 869 |
Página final: | 887 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0294144908000437 |
DOI: |
10.1016/j.anihpc.2008.03.006 |
Notas: | ISI, SCOPUS |