On the complex structure of positive solutions to Matukuma-type equations

Felmer P.; Quaas, A; Tang MX

Abstract

In this article we consider the Matukuma type equation(0.1)? u + K (r) up = 0 in RN for positive radially symmetric solutions. We assume that N > 2, p > 1 and K (r) = 0, for all r = 0. When K satisfies some appropriate monotonicity assumption, the set of positive solutions of (0.1) is well understood. In this work we propose a constructive approach to start the analysis of the structure of the set of positive solutions when this monotonicity assumption fails. We construct some functions K so that the equation exhibits a very complex structure. This function K depends on a set of four parameters: p, N and the limits at zero and infinity of certain quotient describing the growth of K. © 2008 Elsevier Masson SAS. All rights reserved.

Más información

Título según WOS: On the complex structure of positive solutions to Matukuma-type equations
Título según SCOPUS: On the complex structure of positive solutions to Matukuma-type equations
Título de la Revista: ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE
Volumen: 26
Número: 3
Editorial: GAUTHIER-VILLARS/EDITIONS ELSEVIER
Fecha de publicación: 2009
Página de inicio: 869
Página final: 887
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0294144908000437
DOI:

10.1016/j.anihpc.2008.03.006

Notas: ISI, SCOPUS