Neural networks for cost estimation of shell and tube heat exchangers
Abstract
The objective of this paper is to develop and test a model of cost estimating for the shell and tube heat exchangers in the early design phase via the application of artificial neural networks (ANN). An ANN model can help the designers to make decisions at the early phases of the design process. With an ANN model, it is possible to obtain a fairly accurate prediction, even when enough and adequate information is not available in the early stages of the design process. This model proved that neural networks are capable of reducing uncertainties related to the cost estimation of a shell and tube heat exchangers. © 2008 Elsevier Ltd. All rights reserved.
Más información
Título según WOS: | Neural networks for cost estimation of shell and tube heat exchangers |
Título según SCOPUS: | Neural networks for cost estimation of shell and tube heat exchangers |
Título de la Revista: | EXPERT SYSTEMS WITH APPLICATIONS |
Volumen: | 36 |
Número: | 4 |
Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
Fecha de publicación: | 2009 |
Página de inicio: | 7435 |
Página final: | 7440 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0957417408006325 |
DOI: |
10.1016/j.eswa.2008.09.014 |
Notas: | ISI, SCOPUS |