A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming

Iusem, Alfredo; Lara, Felipe; Marcavillaca, Raul T.; Yen, Le Hai

Abstract

We present a proximal point type algorithm tailored for tackling pseudomonotone equilibrium problems in a Hilbert space which are not necessarily convex in the second argument of the involved bifunction. Motivated by the extragradient algorithm, we propose a two-step method and we prove that the generated sequence converges strongly to a solution of the nonconvex equilibrium problem under mild assumptions and, also, we establish a linear convergent rate for the iterates. Furthermore, we identify a new class of functions that meet our assumptions, and we provide sufficient conditions for quadratic fractional functions to exhibit strong quasiconvexity. Finally, we perform numerical experiments comparing our algorithm against two alternative methods for classes of nonconvex mixed variational inequalities.

Más información

Título según WOS: A Two-Step Proximal Point Algorithm for Nonconvex Equilibrium Problems with Applications to Fractional Programming
Título de la Revista: JOURNAL OF GLOBAL OPTIMIZATION
Volumen: 90
Número: 3
Editorial: Springer
Fecha de publicación: 2024
Página de inicio: 755
Página final: 779
DOI:

10.1007/s10898-024-01419-8

Notas: ISI