Crouzeix-Raviart boundary elements

Heuer, N; Sayas, FJ

Abstract

This paper establishes a foundation of non-conforming boundary elements. We present a discrete weak formulation of hypersingular integral operator equations that uses Crouzeix-Raviart elements for the approximation. The cases of closed and open polyhedral surfaces are dealt with. We prove that, for shape regular elements, this non-conforming boundary element method converges and that the usual convergence rates of conforming elements are achieved. Key ingredient of the analysis is a discrete Poincaré-Friedrichs inequality in fractional order Sobolev spaces. A numerical experiment confirms the predicted convergence of Crouzeix-Raviart boundary elements. © 2009 Springer-Verlag.

Más información

Título según WOS: Crouzeix-Raviart boundary elements
Título según SCOPUS: Crouzeix-Raviart boundary elements
Título de la Revista: NUMERISCHE MATHEMATIK
Volumen: 112
Número: 3
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2009
Página de inicio: 381
Página final: 401
Idioma: English
URL: http://link.springer.com/10.1007/s00211-009-0212-z
DOI:

10.1007/s00211-009-0212-z

Notas: ISI, SCOPUS