Crouzeix-Raviart boundary elements
Abstract
This paper establishes a foundation of non-conforming boundary elements. We present a discrete weak formulation of hypersingular integral operator equations that uses Crouzeix-Raviart elements for the approximation. The cases of closed and open polyhedral surfaces are dealt with. We prove that, for shape regular elements, this non-conforming boundary element method converges and that the usual convergence rates of conforming elements are achieved. Key ingredient of the analysis is a discrete Poincaré-Friedrichs inequality in fractional order Sobolev spaces. A numerical experiment confirms the predicted convergence of Crouzeix-Raviart boundary elements. © 2009 Springer-Verlag.
Más información
Título según WOS: | Crouzeix-Raviart boundary elements |
Título según SCOPUS: | Crouzeix-Raviart boundary elements |
Título de la Revista: | NUMERISCHE MATHEMATIK |
Volumen: | 112 |
Número: | 3 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2009 |
Página de inicio: | 381 |
Página final: | 401 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00211-009-0212-z |
DOI: |
10.1007/s00211-009-0212-z |
Notas: | ISI, SCOPUS |