GENERALIZED SOLUTIONS FOR THE ABSTRACT SINGULAR CAUCHY PROBLEM
Abstract
In this work we study existence of solutions in convoluted sense for the abstract singular Cauchy problem. We relate the existence of convoluted solutions with the existence of a generalized singular evolution operator, and we establish a Hille-Yosida type theorem to characterize the existence of a local generalized singular evolution operator.
Más información
Título según WOS: | GENERALIZED SOLUTIONS FOR THE ABSTRACT SINGULAR CAUCHY PROBLEM |
Título según SCOPUS: | Generalized solutions for the abstract singular Cauchy problem |
Título de la Revista: | COMMUNICATIONS ON PURE AND APPLIED ANALYSIS |
Volumen: | 8 |
Número: | 3 |
Editorial: | AMER INST MATHEMATICAL SCIENCES-AIMS |
Fecha de publicación: | 2009 |
Página de inicio: | 955 |
Página final: | 976 |
Idioma: | English |
URL: | http://www.aimsciences.org/journals/displayArticles.jsp?paperID=3983 |
DOI: |
10.3934/cpaa.2009.8.955 |
Notas: | ISI, SCOPUS |