GENERALIZED SOLUTIONS FOR THE ABSTRACT SINGULAR CAUCHY PROBLEM

Henriquez, HR

Abstract

In this work we study existence of solutions in convoluted sense for the abstract singular Cauchy problem. We relate the existence of convoluted solutions with the existence of a generalized singular evolution operator, and we establish a Hille-Yosida type theorem to characterize the existence of a local generalized singular evolution operator.

Más información

Título según WOS: GENERALIZED SOLUTIONS FOR THE ABSTRACT SINGULAR CAUCHY PROBLEM
Título según SCOPUS: Generalized solutions for the abstract singular Cauchy problem
Título de la Revista: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS
Volumen: 8
Número: 3
Editorial: AMER INST MATHEMATICAL SCIENCES-AIMS
Fecha de publicación: 2009
Página de inicio: 955
Página final: 976
Idioma: English
URL: http://www.aimsciences.org/journals/displayArticles.jsp?paperID=3983
DOI:

10.3934/cpaa.2009.8.955

Notas: ISI, SCOPUS