Trigonometric Cherednik algebra at critical level and quantum many-body problems

Emsiz, E; Opdam, EM; Stokman, JV

Abstract

For any module over the affine Weyl group we construct a representation of the associated trigonometric Cherednik algebra A(k) at critical level in terms of Dunkl type operators. Under this representation the center of A(k) produces quantum conserved integrals for root system generalizations of quantum spin-particle systems on the circle with delta function interactions. This enables us to translate the spectral problem of such a quantum spin-particle system to questions in the representation theory of A(k). We use this approach to derive the associated Bethe ansatz equations. They are expressed in terms of the normalized intertwiners of A(k). © 2009 Birkhäuser Verlag Basel/Switzerland.

Más información

Título según WOS: Trigonometric Cherednik algebra at critical level and quantum many-body problems
Título según SCOPUS: Trigonometric Cherednik algebra at critical level and quantum many-body problems
Título de la Revista: Selecta Mathematica, New Series
Volumen: 14
Número: 03-abr
Editorial: Birkhauser Verlag Basel
Fecha de publicación: 2009
Página de inicio: 571
Página final: 605
Idioma: eng
URL: http://link.springer.com/10.1007/s00029-009-0516-y
DOI:

10.1007/s00029-009-0516-y

Notas: ISI, SCOPUS