Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
Abstract
We consider physics-informed neural networks (PINNs) (Raissiet al., 2019) for forward physical problems. In order to find optimal PINNs configuration, we introduce a hyper-parameter optimization (HPO) procedure via Gaussian processes-based Bayesian optimization. We apply the HPO to Helmholtz equation for bounded domains and conduct a thorough study, focusing on: (i) performance, (ii) the collocation points density r and (iii) the frequency ?, confirming the applicability and necessity of the method. Numerical experiments are performed in two and three dimensions, including comparison to finite element methods. © 2023 Elsevier B.V.
Más información
| Título según WOS: | Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems |
| Título según SCOPUS: | Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems |
| Título de la Revista: | Neurocomputing |
| Volumen: | 561 |
| Editorial: | Elsevier B.V. |
| Fecha de publicación: | 2023 |
| Idioma: | English |
| DOI: |
10.1016/j.neucom.2023.126826 |
| Notas: | ISI, SCOPUS |