Quantization of the anisotropic conformal Hořava theory
Abstract
We perform the Batalin-Fradkin-Vilkovisky quantization of the anisotropic conformal Hořava theory in d spatial dimensions. We introduce a model with a conformal potential suitable for any dimension. We define an anisotropic and local gauge-fixing condition that accounts for the spatial diffeomorphisms and the anisotropic Weyl transformations. We show that the BRST transformations can be expressed mainly in terms of a spatial diffeomorphism along a ghost field plus a conformal transformation with another ghost field as argument. We study the quantum Lagrangian in the d=2 case, obtaining that all propagators are regular, except for the fields associated with the measure of the second-class constraints. This behavior is qualitatively equal to the nonconformal case.
Más información
Título según SCOPUS: | ID SCOPUS_ID:85168833431 Not found in local SCOPUS DB |
Título de la Revista: | PHYSICAL REVIEW D |
Volumen: | 108 |
Editorial: | American Physical Society |
Fecha de publicación: | 2023 |
DOI: |
10.1103/PHYSREVD.108.044035 |
Notas: | SCOPUS |