On the Uncertainty Modelling for Linear Continuous-Time Systems Utilising Sampled Data and Gaussian Mixture Models
Abstract
In this paper a Maximum Likelihood estimation algorithm for model error modelling in a continuous-time system is developed utilising sampled data and a Stochastic Embedding approach. Orthonormal basis functions are used to model both the continuous-time nominal model and the error-model. The stochastic properties of the error-model distribution are defined by using a Gaussian mixture model. For the estimation of the nominal model and the error-model distribution we develop a technique based on the Expectation-Maximization algorithm using sampled data from independent experiments. The benefits of our proposal are illustrated via numerical simulations. (C) Copyright 2021 The Authors.
Más información
| Título según WOS: | On the Uncertainty Modelling for Linear Continuous-Time Systems Utilising Sampled Data and Gaussian Mixture Models |
| Título según SCOPUS: | ID SCOPUS_ID:85118112875 Not found in local SCOPUS DB |
| Título de la Revista: | IFAC-PapersOnLine |
| Volumen: | 54 |
| Fecha de publicación: | 2021 |
| Página de inicio: | 589 |
| Página final: | 594 |
| DOI: |
10.1016/J.IFACOL.2021.08.424 |
| Notas: | ISI, SCOPUS |