Products of Jacobians as Prym-Tyurin varieties

Carocca A.; Lange H.; Rodriguez, RE; Rojas, AM

Abstract

Let X 1, ..., X m denote smooth projective curves of genus g i 2 over an algebraically closed field of characteristic 0 and let n denote any integer at least equal to . We show that the product JX 1 × ... × JX m of the corresponding Jacobian varieties admits the structure of a Prym-Tyurin variety of exponent n m-1. This exponent is considerably smaller than the exponent of the structure of a Prym-Tyurin variety known to exist for an arbitrary principally polarized abelian variety. Moreover it is given by explicit correspondences. © Springer Science+Business Media B.V. 2008.

Más información

Título según WOS: Products of Jacobians as Prym-Tyurin varieties
Título según SCOPUS: Products of Jacobians as Prym-Tyurin varieties
Título de la Revista: GEOMETRIAE DEDICATA
Volumen: 139
Número: 1
Editorial: Springer
Fecha de publicación: 2009
Página de inicio: 219
Página final: 231
Idioma: English
URL: http://link.springer.com/10.1007/s10711-008-9323-4
DOI:

10.1007/s10711-008-9323-4

Notas: ISI, SCOPUS