Products of Jacobians as Prym-Tyurin varieties
Abstract
Let X 1, ..., X m denote smooth projective curves of genus g i 2 over an algebraically closed field of characteristic 0 and let n denote any integer at least equal to . We show that the product JX 1 × ... × JX m of the corresponding Jacobian varieties admits the structure of a Prym-Tyurin variety of exponent n m-1. This exponent is considerably smaller than the exponent of the structure of a Prym-Tyurin variety known to exist for an arbitrary principally polarized abelian variety. Moreover it is given by explicit correspondences. © Springer Science+Business Media B.V. 2008.
Más información
Título según WOS: | Products of Jacobians as Prym-Tyurin varieties |
Título según SCOPUS: | Products of Jacobians as Prym-Tyurin varieties |
Título de la Revista: | GEOMETRIAE DEDICATA |
Volumen: | 139 |
Número: | 1 |
Editorial: | Springer |
Fecha de publicación: | 2009 |
Página de inicio: | 219 |
Página final: | 231 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s10711-008-9323-4 |
DOI: |
10.1007/s10711-008-9323-4 |
Notas: | ISI, SCOPUS |