Finite element approximation of the elasticity spectral problem on curved domains

Hernandez, E

Abstract

We analyze the finite element approximation of the spectral problem for the linear elasticity equation with mixed boundary conditions on a curved non-convex domain. In the framework of the abstract spectral approximation theory, we obtain optimal order error estimates for the approximation of eigenvalues and eigenvectors. Two kinds of problems are considered: the discrete domain does not coincide with the real one and mixed boundary conditions are imposed. Some numerical results are presented. © 2008 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Finite element approximation of the elasticity spectral problem on curved domains
Título según SCOPUS: Finite element approximation of the elasticity spectral problem on curved domains
Título de la Revista: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Volumen: 225
Número: 2
Editorial: Elsevier
Fecha de publicación: 2009
Página de inicio: 452
Página final: 458
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0377042708004172
DOI:

10.1016/j.cam.2008.08.011

Notas: ISI, SCOPUS