Finite element approximation of the elasticity spectral problem on curved domains
Abstract
We analyze the finite element approximation of the spectral problem for the linear elasticity equation with mixed boundary conditions on a curved non-convex domain. In the framework of the abstract spectral approximation theory, we obtain optimal order error estimates for the approximation of eigenvalues and eigenvectors. Two kinds of problems are considered: the discrete domain does not coincide with the real one and mixed boundary conditions are imposed. Some numerical results are presented. © 2008 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Finite element approximation of the elasticity spectral problem on curved domains |
Título según SCOPUS: | Finite element approximation of the elasticity spectral problem on curved domains |
Título de la Revista: | JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS |
Volumen: | 225 |
Número: | 2 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2009 |
Página de inicio: | 452 |
Página final: | 458 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0377042708004172 |
DOI: |
10.1016/j.cam.2008.08.011 |
Notas: | ISI, SCOPUS |