Minimal orthonormal bases for pure quantum state estimation
Abstract
We present an analytical method to estimate pure quantum states using a minimum of three measurement bases in any finite -dimensional Hilbert space. This is optimal as two bases are insufficient to construct an informationally complete positive operator -valued measurement (ICPOVM) for pure states. We demonstrate our method using a binary tree structure, providing an algorithmic path for implementation. The performance of the method is evaluated through numerical simulations, showcasing its effectiveness for quantum state estimation.
Más información
Título según WOS: | Minimal orthonormal bases for pure quantum state estimation |
Título según SCOPUS: | ID SCOPUS_ID:85185766067 Not found in local SCOPUS DB |
Título de la Revista: | Quantum |
Volumen: | 8 |
Fecha de publicación: | 2024 |
DOI: |
10.22331/Q-2024-02-08-1244 |
Notas: | ISI, SCOPUS - ISI |