A multi-stage machine learning-based method to estimate wind parameters from Ha lines of massive stars
Abstract
This work presents a multi-stage method for estimating wind parameters in the domain of massive stars. We use the H? non-rotating synthetic spectral lines from the ISOSCELES database's ?-slow solutions to train a Gaussian Mixture Model-based cluster method and a deep neural network classifier. Then, the observed H? line profiles are deconvolved and classified into a class that provides a reduced subset of line profiles defined in ISOSCELES. This allows us to accurately and rapidly identify the closest line profile within the selected subset and obtain the wind parameters: v
Más información
| Título según WOS: | A multi-stage machine learning-based method to estimate wind parameters from Ha lines of massive stars |
| Título según SCOPUS: | A multi-stage machine learning-based method to estimate wind parameters from H? lines of massive stars |
| Título de la Revista: | Astronomy and Computing |
| Volumen: | 52 |
| Editorial: | Elsevier B.V. |
| Fecha de publicación: | 2025 |
| Idioma: | English |
| DOI: |
10.1016/j.ascom.2025.100941 |
| Notas: | ISI, SCOPUS |