ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE
Abstract
In this study, we prove the strong consistency of the least squares esti-mator in a random sampled linear regression model with long-memory noise and an independent set of random times given by renewal process sampling. Addition-ally, we illustrate how to work with a random number of observations up to time T = 1. A simulation study is provided to illustrate the behavior of the different terms, as well as the performance of the estimator under various values of the Hurst parameter H.
Más información
| Título según WOS: | ON THE CONSISTENCY OF THE LEAST SQUARES ESTIMATOR IN MODELS SAMPLED AT RANDOM TIMES DRIVEN BY LONG MEMORY NOISE: THE RENEWAL CASE |
| Título de la Revista: | STATISTICA SINICA |
| Volumen: | 33 |
| Número: | 1 |
| Editorial: | STATISTICA SINICA |
| Fecha de publicación: | 2023 |
| Página de inicio: | 1 |
| Página final: | 26 |
| DOI: |
10.5705/ss.202020.0457 |
| Notas: | ISI |