Vector-valued generalized Ornstein-Uhlenbeck processes: Properties and parameter estimation

Voutilainen, Marko; Viitasaari, Lauri; Ilmonen, Pauliina; Torres, Soledad; Tudor, Ciprian

Abstract

Generalizations of the Ornstein-Uhlenbeck process defined through Langevin equations, such as fractional Ornstein-Uhlenbeck processes, have recently received a lot of attention. However, most of the literature focuses on the one-dimensional case with Gaussian noise. In particular, estimation of the unknown parameter is widely studied under Gaussian stationary increment noise. In this article, we consider estimation of the unknown model parameter in the multidimensional version of the Langevin equation, where the parameter is a matrix and the noise is a general, not necessarily Gaussian, vector-valued process with stationary increments. Based on algebraic Riccati equations, we construct an estimator for the parameter matrix. Moreover, we prove the consistency of the estimator and derive its limiting distribution under natural assumptions. In addition, to motivate our work, we prove that the Langevin equation characterizes essentially all multidimensional stationary processes.

Más información

Título según WOS: Vector-valued generalized Ornstein-Uhlenbeck processes: Properties and parameter estimation
Título de la Revista: SCANDINAVIAN JOURNAL OF STATISTICS
Volumen: 49
Número: 3
Editorial: Wiley
Fecha de publicación: 2022
Página de inicio: 992
Página final: 1022
DOI:

10.1111/sjos.12552

Notas: ISI