A priori bounds for superlinear problems involving the N-Laplacian

Lorca S.; Ruf B; Ubilla P.

Abstract

In this paper we establish a priori bounds for positive solutions of the equation- ?N u = f (u), u ? H0 1 (O), where O is a bounded smooth domain in RN, and the nonlinearity f has at most exponential growth. The techniques used in the proofs are a generalization of the methods of Brezis and Merle to the N-Laplacian, in combination with the Trudinger-Moser inequality, the Moving Planes method and a Comparison Principle for the N-Laplacian. © 2008 Elsevier Inc. All rights reserved.

Más información

Título según WOS: A priori bounds for superlinear problems involving the N-Laplacian
Título según SCOPUS: A priori bounds for superlinear problems involving the N-Laplacian
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 246
Número: 5
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2009
Página de inicio: 2039
Página final: 2054
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039608004075
DOI:

10.1016/j.jde.2008.10.002

Notas: ISI, SCOPUS