A priori bounds for superlinear problems involving the N-Laplacian
Abstract
In this paper we establish a priori bounds for positive solutions of the equation- ?N u = f (u), u ? H0 1 (O), where O is a bounded smooth domain in RN, and the nonlinearity f has at most exponential growth. The techniques used in the proofs are a generalization of the methods of Brezis and Merle to the N-Laplacian, in combination with the Trudinger-Moser inequality, the Moving Planes method and a Comparison Principle for the N-Laplacian. © 2008 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | A priori bounds for superlinear problems involving the N-Laplacian |
Título según SCOPUS: | A priori bounds for superlinear problems involving the N-Laplacian |
Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
Volumen: | 246 |
Número: | 5 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2009 |
Página de inicio: | 2039 |
Página final: | 2054 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039608004075 |
DOI: |
10.1016/j.jde.2008.10.002 |
Notas: | ISI, SCOPUS |