A priori bounds for superlinear problems involving the N-Laplacian
Abstract
In this paper we establish a priori bounds for positive solutions of the equation- ?N u = f (u), u ? H0 1 (O), where O is a bounded smooth domain in RN, and the nonlinearity f has at most exponential growth. The techniques used in the proofs are a generalization of the methods of Brezis and Merle to the N-Laplacian, in combination with the Trudinger-Moser inequality, the Moving Planes method and a Comparison Principle for the N-Laplacian. © 2008 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | A priori bounds for superlinear problems involving the N-Laplacian |
| Título según SCOPUS: | A priori bounds for superlinear problems involving the N-Laplacian |
| Título de la Revista: | JOURNAL OF DIFFERENTIAL EQUATIONS |
| Volumen: | 246 |
| Número: | 5 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2009 |
| Página de inicio: | 2039 |
| Página final: | 2054 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022039608004075 |
| DOI: |
10.1016/j.jde.2008.10.002 |
| Notas: | ISI, SCOPUS |