Symmetric functions in noncommuting variables in superspace
Abstract
In 2004, Rosas and Sagan developed the theory of symmetric functions in noncommuting variables, achieving results analogous to classical symmetric functions. On the other hand, the same year, Desrosiers, Lapointe and Mathieu introduced the theory of symmetric functions in superspace, involving both commuting and anticommuting variables, extending the classic theory. Here, we introduce symmetric functions in noncommuting variables in superspace. We extend the classical symmetric functions in noncommuting variables to superspace: monomial, power sum, elementary and complete homogeneous functions. These functions generalize both those studied by Rosas and Sagan and those studied by Desrosiers, Lapointe, and Mathieu. Additionally, we define Schur-type functions in noncommuting variables in superspace. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Más información
Título según WOS: | ID WOS:001356377100001 Not found in local WOS DB |
Título de la Revista: | DISCRETE MATHEMATICS |
Volumen: | 348 |
Número: | 2 |
Editorial: | Elsevier |
Fecha de publicación: | 2025 |
DOI: |
10.1016/j.disc.2024.114320 |
Notas: | ISI |