Dimensions of compact invariant sets of some expanding maps
Abstract
We study the Hausdorff dimension and measures of full Hausdorff dimension for a compact invariant set of an expanding non-conformal map on the torus given by an integer-valued diagonal matrix. The Hausdorff dimension of a 'general Sierpinski carpet' was found by McMullen and Bedford and the uniqueness of the measure of full Hausdorff dimension in some cases was proved by Kenyon and Peres. We extend these results by using compensation functions to study a general Sierpinski carpet represented by a shift of finite type. We give some conditions under which a general Sierpinski carpet has a unique measure of full Hausdorff dimension and study the properties of the unique measure. © 2008 Cambridge University Press.
Más información
Título según WOS: | Dimensions of compact invariant sets of some expanding maps |
Título según SCOPUS: | Dimensions of compact invariant sets of some expanding maps |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 29 |
Número: | 1 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2009 |
Página de inicio: | 281 |
Página final: | 315 |
Idioma: | English |
URL: | http://www.journals.cambridge.org/abstract_S014338570800014X |
DOI: |
10.1017/S014338570800014X |
Notas: | ISI, SCOPUS |