Dimensions of compact invariant sets of some expanding maps

Yayama Y.

Abstract

We study the Hausdorff dimension and measures of full Hausdorff dimension for a compact invariant set of an expanding non-conformal map on the torus given by an integer-valued diagonal matrix. The Hausdorff dimension of a 'general Sierpinski carpet' was found by McMullen and Bedford and the uniqueness of the measure of full Hausdorff dimension in some cases was proved by Kenyon and Peres. We extend these results by using compensation functions to study a general Sierpinski carpet represented by a shift of finite type. We give some conditions under which a general Sierpinski carpet has a unique measure of full Hausdorff dimension and study the properties of the unique measure. © 2008 Cambridge University Press.

Más información

Título según WOS: Dimensions of compact invariant sets of some expanding maps
Título según SCOPUS: Dimensions of compact invariant sets of some expanding maps
Título de la Revista: ERGODIC THEORY AND DYNAMICAL SYSTEMS
Volumen: 29
Número: 1
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 2009
Página de inicio: 281
Página final: 315
Idioma: English
URL: http://www.journals.cambridge.org/abstract_S014338570800014X
DOI:

10.1017/S014338570800014X

Notas: ISI, SCOPUS