Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases

Jensen, Jacob Krueger; Johnson, Nathan Robert; Wilkerson, Curtis Gene

Abstract

The enzymatic mechanism that governs the synthesis of the xylan backbone polymer, a linear chain of xylose residues connected by beta-1,4 glycosidic linkages, has remained elusive. Xylan is a major constituent of many kinds of plant cell walls, and genetic studies have identified multiple genes that affect xylan formation. In this study, we investigate several homologs of one of these previously identified xylan-related genes, IRX10 from Arabidopsis thaliana, by heterologous expression and in vitro xylan xylosyltransferase assay. We find that an IRX10 homolog from the moss Physcomitrella patens displays robust activity, and we show that the xylosidic linkage formed is a beta-1,4 linkage, establishing this protein as a xylan beta-1,4-xylosyltransferase. We also find lower but reproducible xylan xylosyltransferase activity with A. thaliana IRX10 and with a homolog from the dicot plant Plantago ovata, showing that xylan xylosyltransferase activity is conserved over large evolutionary distance for these proteins.

Más información

Título según WOS: ID WOS:000342849800002 Not found in local WOS DB
Título de la Revista: PLANT JOURNAL
Volumen: 80
Número: 2
Editorial: Wiley
Fecha de publicación: 2014
Página de inicio: 207
Página final: 215
DOI:

10.1111/tpj.12641

Notas: ISI